metal-organic papers

Received 23 August 2006 Accepted 24 August 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Anne Nielsen, Christine J. McKenzie and Andrew D. Bond*

University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark

Correspondence e-mail: adb@chem.sdu.dk

Key indicators

Single-crystal X-ray study T = 180 K Mean σ (C–C) = 0.010 Å R factor = 0.073 wR factor = 0.191 Data-to-parameter ratio = 28.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ -chloro-bis{[N,N-bis(2-pyridylmethyl)glycine- $\kappa^4 N, N', N'', O$]copper(II)] diperchlorate acetonitrile tetrasolvate

The title compound, $[Cu_2Cl_2(C_{14}H_{15}N_3O_2)_2](ClO_4)_2 \cdot 4C_2H_3N$, contains dichloro-bridged dicopper(II) complexes lying on centres of inversion. The crystal examined was twinned by a 180° rotation about c^* .

Comment

Reaction of bis(2-pyridylmethyl)glycine (bpgH) and CuCl₂·2H₂O in acidic methanol results in immediate precipitation of the title compound, (I). Compound (I) contains dichloro-bridged dicopper(II) complexes (Fig. 1) lying on centres of inversion, with the carboxylate groups protonated. The coordination geometry around the Cu^{II} atom (Table 1) is approximately octahedral, but exhibits significant elongation of the Cu1–O1 and Cu1–Cl1ⁱ bonds [symmetry code: (i) 1 - x, 1 - y, 1 - z] on account of the Jahn–Teller distortion associated with Cu^{II}. The protonated carboxyl groups form hydrogen bonds to perchlorate anions (Table 2).

Experimental

Bis(2-pyridylmethyl)glycine (0.1573 g, 0.611 mmol) and CuCl₂·2H₂O (0.1047 g, 0.614 mmol) were dissolved in methanol (5 ml) and HClO₄ (0.25 ml of a 70% aqueous solution) was added. A turquoise powder (yield 0.2662 g, 93%) precipitated immediately. Recrystallization from hot acetonitrile afforded crystals of (I).

Crystal data

$[Cu_2Cl_2(C_{14}H_{15}N_3O_2)_2](ClO_4)_2$.	$\gamma = 97.159 \ (4)^{\circ}$
$4C_2H_3N$	$V = 1127.58 (17) \text{ Å}^3$
$M_r = 1075.68$	Z = 1
Triclinic, P1	$D_x = 1.584 \text{ Mg m}^{-3}$
a = 7.1238 (6) Å	Mo $K\alpha$ radiation
b = 10.6609 (10) Å	$\mu = 1.25 \text{ mm}^{-1}$
c = 14.9894 (13) Å	T = 180 (2) K
$\alpha = 92.919 \ (4)^{\circ}$	Plate, turquoise
$\beta = 91.266 \ (4)^{\circ}$	$0.24 \times 0.20 \times 0.05 \text{ mm}$

Data collection

Bruker–Nonius X8APEX-II CCD
diffractometer26597 measured reflections
8342 independent reflections
4142 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.076$
 $\sigma_{max} = 26.6^{\circ}$ Absorption correction: multi-scan
 $T_{min} = 0.768, T_{max} = 0.940$ $R_{int} = 0.076$
 $\sigma_{max} = 26.6^{\circ}$

© 2006 International Union of Crystallography All rights reserved Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.073$	$w = 1/[\sigma^2(F_o^2) + (0.0828P)^2]$
$wR(F^2) = 0.191$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\text{max}} < 0.001$
8342 reflections	$\Delta \rho_{\rm max} = 1.11 \text{ e } \text{\AA}^{-3}$
289 parameters	$\Delta \rho_{\rm min} = -0.65 \ {\rm e} \ {\rm A}$

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.970 (5)	Cu1-O1	2.316 (4)
Cu1-N2	2.076 (5)	Cu1-Cl1	2.2397 (17)
Cu1-N3	1.976 (5)	Cu1-Cl1 ⁱ	3.1116 (18)
	02.0 (2)		01 50 (10)
N1-Cu1-N2	83.0 (2)	N3-Cu1-01	91.58 (18)
N1-Cu1-N3	164.4 (2)	Cl1-Cu1-O1	100.18 (12)
N2-Cu1-N3	82.3 (2)	N1-Cu1-Cl1 ⁱ	84.87 (14)
N1-Cu1-Cl1	97.10 (15)	N2-Cu1-Cl1 ⁱ	84.60 (15)
N2-Cu1-Cl1	179.18 (17)	N3-Cu1-Cl1 ⁱ	88.40 (14)
N3-Cu1-Cl1	97.50 (15)	Cl1-Cu1-Cl1 ⁱ	94.61 (5)
N1-Cu1-O1	91.33 (17)	O1-Cu1-Cl1 ⁱ	165.08 (11)
N2-Cu1-O1	80.62 (18)		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2

Hydrogen-bond	geometry	(Å, °).	
---------------	----------	---------	--

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O2-H2\cdots O2D^{ii}$	0.84	1.88	2.720 (7)	176

Symmetry code: (ii) -x, -y, -z + 1.

The crystal was twinned by 180° rotation about *c**. The diffraction pattern was indexed using *CELL_NOW* (Bruker–Nonius, 2004) and integrated as a two-component twin using *SAINT-Plus* (Bruker, 2003). 8445 data (2549 unique; $R_{int} = 0.077$) were associated with component 1 only, 8423 data (2539 unique; $R_{int} = 0.084$) were associated with component 2 only, and 9729 data (3277 unique; $R_{int} = 0.076$) were overlapped. Refinement was performed using the HKLF5 format in *SHELXTL* (Sheldrick, 2000). H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.95 Å for Csp^2 or 0.99 Å for the methylene groups, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The methyl groups of the acetonitrile molecules were positioned geometrically, with C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, and allowed to rotate about their local threefold axes. In the final cycles of refinement, rotation was not permitted to aid convergence. The H atom of the hydroxyl group was

Figure 1

The dichloro-bridged dicopper(II) cationic complex in (I), showing displacement ellipsoids at the 50% probability level for non-H atoms. H atoms are shown as spheres of arbitrary radius. [Symmetry code (i) 1 - x, 1 - y, 1 - z.]

placed in the plane of the carboxyl group, so as to form the best hydrogen bond (AFIX 83 in *SHELXTL*), with O-H = 0.84 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. The largest peak in the difference density lies in the vicinity of the perchlorate anion.

Data collection: *APEX2* (Bruker–Nonius, 2004); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet (Denmark) for provision of the X-ray equipment.

References

- Bruker (2003). SAINT-Plus. Version 7.06A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker–Nonius (2004). *APEX2*. Version 1.0-22. Bruker–Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2004). TWINABS. Version 1.05. Bruker–Nonius BV, Delft, The Netherlands.